Аннотация

на соискание степени доктора философии (PhD)

Жакыповой Гульнур Мухамеджановны

по образовательной программе 8D07366 - Производства строительных материалов, изделий и конструкций по теме «Технология производства тротуарной плитки из мелкозернистого бетона на основе местных сырьевых ресурсов»

Актуальность работы. Основными путями повышения эффективности строительства считаются использование вторичных ресурсов в производстве строительных материалов и изделий и снижение материалоемкости. Этого можно достичь за счет применения прогрессивных научно-технических достижений, ресурсосберегающих технологий и снижения затрат трудовых и топливно-энергетических ресурсов на единицу продукции. эффективность применения золоотвалов теплоэлектроцентраля (ТЭЦ) в производстве строительных материалов доказана на основе экспериментов с многочисленными научными исследованиями. Это сырье обобщено на снижение расхода материалов, энергетических запасов топлива, сокращение технического цикла изделия производства. Еще одно решение заключается в том, что в результате удаления золоотвала можно добиться экономии материалов. Вывоз и использование золы требует большого количества средств.

Мелкозернистый бетон (МЗБ) широко используется в строительной отрасли. Среди них – тротуарная плитка и плитка для различных дорожных покрытий. Но, как мы видим на практике, мелкозернистый бетон подвергается воздействию агрессивной среды, на поверхности появляются соли, ухудшается внешний вид изделия и это приводит к его разрушению. Еще одним недостатком является то, что расход портландцемента у мелкозернистого бетона выше, чем у обычного тяжелого бетона. Одним из возможных путей решения этой проблемы является улучшение свойств и структуры мелкозернистого бетона путем добавления различных добавок. Использование многих тонн отходов тепловой энергии напрямую отвечает на проблему переработки и внедрения ресурсосберегающих технологий. Таким образом, использование золы ТЭЦ позволяет получить новый эффективный вид строительного материала с улучшением строительных технических свойств, сразу снизить капитальные и текущие затраты, состав золоотвалов, строительства. Использование существенно снижает стоимость золоотвалов в производстве строительных материалов, во-первых, улучшит экологическое состояние региона, а во-вторых, решит проблему утилизации многотоннажных отходов.

Рассматриваемая научная работа выполнена в рамках государственной программы индустриально-инновационного развития Республики Казахстан на 2020-2025 годы.

Объект исследования. Тротуарная плитка из мелкозернистого бетона на основе местного сырья.

Область исследования. Комплексное изучение структуры МЗБ на основе техногенного сырья.

В целях экономии природных ресурсов одной из актуальных задач считается утилизация промышленных отходов и использование их в сфере строительных материалов. Такая программа, несомненно, повлияет на расширение номенклатуры строительных композитов, выпускаемых на техническом уровне. Согласно этому, онжом производить золобетон, арболитовые изделия, используя керамические материалы, местное сырье и золу из золоотвалов. Использование зольных отходов в производстве строительных материалов выгодно как экономически, так и экологически. Одним из наиболее эффективных направлений является в качестве сырья для производства строительных материалов. Следует отметить, что в настоящее время в Кызылординской области наблюдается дефицит эффективных строительных материалов, особенно производство качественных, с низкой стоимостью материалов. В связи с этим на основе зольных отвалов производятся строительные материалы, в частности, бетон, керамика, легкие заполнители и т.д.

Идея диссертационного исследования заключается в производстве изготовления разновидности строительных материалов в зависимости от химико-минералогического, фазового состава и зоны распространения золы Кызылординской ТЭЦ. Использование многотоннажных тонн отходов тепловой энергии напрямую отвечает на проблему переработки и внедрения ресурсосберегающих технологий. Таким образом, использование золы ТЭЦ позволяет получить новый эффективный вид строительного материала с улучшенными строительными техническими свойствами, что значительно снижает себестоимость изделия.

Целью диссертационной работы является технология изготовления дорожных изделий из мелкозернистого бетона на основе местных сырьевых ресурсов.

Для достижения цели работы были поставлены следующие задачи:

- Изучение состава, свойств и конструктивных особенностей золы, полученной из Кызылординского теплоэлектроцентрали (ТЭЦ);
- Определение и исследование оптимального состава МЗБ для дорожных покрытий с добавлением золоотходов ТЭЦ;
- Разработка технологии производства плитки дорожного полотна МЗБ с добавлением высокоактивного метакаолина (ВАМ) и С-3 с золоотходами ТЭЦ;
- Определение экономической эффективности производства плит напольного покрытия МЗБ на основе местного сырья и органо-минеральных добавок.

Методы решения задач.

Решение поставленных задач осуществляется в соответствии с общепринятой методикой проведения научных исследований, включающей обобщение анализ предыдущих исследований, аналитическую, лабораторную производственно-экспериментальную И апробацию технологических разработок. Решение поставленных задач осуществлялось в соответствии с общепринятой методикой проведения научных исследований, включающей обобшение анализ предыдущих исследований, аналитическую, лабораторную производственно-экспериментальную И апробацию технологических разработок.

Научные результаты (научные положения), выносимые на защиту:

- * Оптимальный состав мелкозернистого бетона на основе органоминеральных (зола ТЭЦ-С-3, ВАМ) смесей и его свойства.
- *Результаты физико-химического анализа структуры мелкозернистого бетона на основе органо-минеральных (зола ТЭЦ-С-3, ВАМ) смесей.
- * Технология производства мелкозернистого бетона на основе органоминеральных (зола С-3, ВАМ) смесей.
- * Расчет экономической эффективности использования бетонов для дорожных покрытий на основе органо-минеральных смесей.

Научная новизна работы.

Путем уникального измельчения местного сырья, золы ТЭЦ и смеси С-3, а также добавления МЗБ получен эффективный нефтегранулированный бетон для дорожных изделий с высокой однородностью и пониженной капиллярной пористостью.

В процессе твердения цементного камня МЗБ содержит гидросиликаты низшего основания, минералы пломберита ($C_5S_6H_n$), минерал гиролита и повышает степень гидратации, ускоряет процессы кристаллизации гидросиликатов и повышает прочность мелкозернистого бетона.

МЗБ с улучшенными свойствами для дорожных покрытий получен путем введения органо-минеральной смеси, состоящей из модификатора метакаолина и золы ТЭЦ, что способствует уменьшению капиллярной пористости, увеличению плотности, получению устойчивых новообразований в виде низкоосновных гидросиликатов кальция, а также как укрепление зоны контакта между цементным камнем и заполнителем.

Практическая ценность работы.

Использование золоотвалов Кызылординской ТЭЦ в производстве дорожной тротуарной плитки является не только полезным для строительной отрасли, но и наиболее рациональным способом решения экономических и экологических проблем.

Определен оптимальный состав МЗБ для производства дорожной тротуарной плитки путем добавления в ВАМ и С-3 золы ТЭЦ города Кызылорды.

Экономическая выгода полученных результатов. Разработанный состав дорожной тротуарной плитки и способ производства проверены на производственной базе ТОО «НурБестСтройСервис» в г. Кызылорда.

Выпущена опытная партия в количестве 10 000 единиц. Получен новый состав бетона для тротуарной плитки.

По предлагаемой технологии экономическая эффективность производства 1 м^3 тротуарной плитки из мелкозернистого бетона составляет около 5910 тенге по сравнению с известной технологией, а при объеме производства 10000 м^3 в год - более 59 млн тенге.

Личный вклад автора

- Экспериментально определены характеристики сырья для приготовления органо-минеральной добавки для мелкозернистого бетона;
- Проанализировано современное состояние технологии производства тротуарной плитки из мелкозернистого бетона на основе работ отечественных и зарубежных ученых.
- Определен оптимальный состав мелкозернистого бетона на основе органоминеральных (зола-С-3) и других смесей и изучены его свойства;
- Путем планирования экспериментальной работы математическим методом определен оптимальный состав вяжущего и состава мелкозернистого бетона с органо-минеральной добавкой. Созданы номограммы оптимального состава.
- Исследована микроструктуру цементного камня в составе мелкозернистого бетона с органо-минеральными добавками и др. и получил конкретные выводы.
- Проведен рентген-фазовый анализ структуры представляемого органоминерального соединения и дробленого бетона с добавлением ВАМ.
- Определены состав и физико-механические свойства мелкозернистого бетона с органо-минеральной добавкой.
- Рассчитана экономическая эффективность технологии производства тротуарной плитки из мелкозернистого бетона на основе местного сырья.

работы. Материалы диссертационного исследования обсуждались следующих международных докладывались на отечественных научно-практических конференциях: изучение гранулированного бетона для дорожных покрытий. IV Международная наука Центральноазиатская инновашии 2019: международная практическая конференция. 2019 год 21 января. С.270-274 «Исследование теплоэлектроцентрале собранной В Кызылординском качестве сырья для мелкозернистого бетона». IX использования в Международная научно-практическая конференция» Science and education in the modern world: challenges of the XXI century». Технические науки. Том I. Нурсултан-2021год.22-25бет; актуальные проблемы практики и науки и методы их решения тезисы IV Международной научно – практической конференции «Приготовление органо-минеральных смесей в мелкозернистом бетоне на основе местного сырья» .Милан, Италия (31 января-02 февраля 2022 г.).

Публикация результатов исследования. По теме диссертации опубликовано 7 научных работ, в том числе: 1 статья в изданиях, индексированных базами Scopus и Web of Science; перечень изданий

комитета по обеспечению качества в области науки и образования в журналах-3 статьи; конференции в международных научно-практических сборниках-2 статьи; в других международных изданиях-1 статья, в других изданиях Республики Казахстан - Получена статья 1, а также 5 патентов на полезный патент.

Объем и структура работы. Диссертационная работа состоит из введения, четырех разделов, заключения, письменного листа и списка использованной литературы, приложений в соответствии с содержанием и задачами исследования. Объем работы составляет 128 страниц текстов, 37 рисунков, 27 таблиц, 2 приложений и 116 указаний к литературе.

Подтверждена обоснованность и правильность научного принципа, а также выводов и рекомендаций:

- Для мелкозернистого бетона использованы органо-минеральные добавки высокоактивный метакаолинит, суперпластификатор С-3 и зола Кызылординской ТЭЦ;
- Оптимальный состав вяжущего и состава мелкозернистого бетона с органо-минеральной добавкой путем планирования экспериментальных работ математическим методом.
- Экономическая эффективность технологии производства тротуарной плитки из мелкозернистого бетона на основе местных сырьевых ресурсов.
- Результаты исследований были опубликованы в авторитетном журнале, в журнале с высоким импактфактором, входящем в базу Scopus и защищены патентами.